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Abstract - The paper presents the finite element (FE) 

modelling of operation of a rotational motion sensor that 
uses a balanced oscillator (tuning fork) to sense the angular 
rate. The 3D FE model has been employed to examining the 
sensor’s modal properties. The sensitivity functions have 
been obtained for adjusting the geometric parameters of the 
quartz element in order to achieve the desired values of 
natural frequencies. The performance of computations 
during the dynamic analysis has been enhanced by 
introducing a dynamically reduced model based on 
truncation of dynamic contributions of higher modes of the 
vibrating structure.  

Results are presented in terms of sensor performance 
characteristics for various design parameters and modes of 
operation. The modelling assumptions adopted are tested 
experimentally on the vibrating quartz resonator.  
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1.  INTRODUCTION 
 
Accurate simulation of piezoelectric transducers requires 

adequate models that deal not only with fundamental 
principles underlying measurement systems but also with 
principles of treatment of deviations and uncertainties based 
on the analysis of instrument structure and the effects of 
sensitivity to parameters variations and external influences. 
Systematic approaches to mathematical modelling of 
sensors are extensively discussed in the literature [1].  

An application of the FE method in modelling the 
resonance characteristics of the piezoelectric resonators is 
described [2]. The variation formulation of the problem is 
based on physical description of the piezoelectric structures 
behaviour and testing of the model on the longitudinally 
vibrating quartz resonator.  

Our paper reports comparative results of modelling the 
spatial vibration modes of H-shape piezoelectric structure 
that is a constituent part of an angular rate sensor. The rate 
sensor uses the phenomenon of the Coriolis acceleration. In 
the sensor an oscillatory motion of the vibrating structure is 
coupled from a primary vibrating mode into a second mode, 
when the sensor experiences angular rate. A functional 
description of the gyro rate sensor is available [3, 4].  

An application of the FE analysis to modelling a rate 
sensor produced using shell resonator technology is 

presented [5].  
The use of a simple mechanical coupling model and FE 

analysis with the aim of reducing the offset output of an H-
shape resonator is demonstrated [6]. The results of the 
analysis have shown, in particular, a correlation between the 
shape of the vibrator and the ratio between the differing 
excitation frequency and detection frequency. 

We introduce a novel 3D FE computational model and 
software tools that allow examining the systems’ spatial 
dynamic properties and appreciation of the parametric 
sensitivity of these. The model is based on physical effects 
involved and a description in terms of physical geometry 
and material properties. There is some strong evidence that 
model developed can be used effectively for analysis and 
design of the gyro rate sensors. 

 
2.  BASIC PRINCIPLE 

 
There are many practical implementations which can be 

used to produce a rate sensor. The topic describes a 
computational model of the GyroChip family sensor that 
uses a balanced oscillator to sense angular rate. The physical 
principle of operation and performance specifications of the 
sensor is presented [3, 4]; they are also available on the web 
site http://www.systron.com. 

The sensor has found a wide spectrum of applications in 
the automotive, aerospace, defence, industrial, commercial, 
and medical industries. It contains a microminiature double-
ended quartz tuning fork and supporting structure, all 
fabricated chemically from a single wafer of 
monocrystalline piezoelectric quartz, Fig. 1. A tine 
undergoing linear motion (along X axis) in a frame of 
reference, which is rotating about the sensor’s longitudinal 
axis, experiences the Coriolis acceleration (along Y axis) 
that is directly proportional to the rate of rotation.  

The drive tines constitute the active portion of the 
sensor; they are driven by an oscillator circuit at precise 
amplitude. Each tine will have Coriolis force acting on it of: 

2 rF m= ⋅ ⋅Ω ⋅V ,                             (1) 

where m = tine mass, V r = instantaneous radial velocity, and 
Ω = input rate.  

This force is perpendicular to both the input rate and the 
instantaneous radial velocity. The two drives tines move in 
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opposite directions; the resultant forces are perpendicular to 
the plane of the fork assembly and in opposite directions as 
well. This produces a torque that is proportional to the input 
rotational rate.  
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The pickup tines, being the sensing portion of the sensor, 
respond to the oscillating torque by moving into and out of 
plane producing an output signal proportional to the angular 
rate.  

 
2.  FINITE ELEMENT MODEL 

 
The tuning fork is a vibrating piezoelectric plate of the 

complex geometric shape the side surfaces of which are 
laminated by electrodes enabling to create an electric field 
inside of the material.  

In this practical situation the electric field created in the 
material may be considered as being prescribed, so the 
piezoelectric phenomena in the plate are governed by the 
single linear piezoelectricity equation as 

{ } { } [ ]{ };Ec e Eσ ε = −               (2) 

where  and { are vectors containing the components 

of elastic stress and strain, { = vectors containing the 

components of the electric field,  = stiffness tensor 

under constant electric field, [ = piezoelectric stress 
tensor. 
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As relative displacements of the tuning fork with respect 
to the rigid rotating frame are being considered, the full 
acceleration being used in 
the virtual work equation of the finite element as 
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where symbol  denotes the virtual quantity, 
= displacement vector of a particle inside the 

finite element expressed in terms of the form function 
matrix  and the nodal displacement vector { ,  = 
density of the material, { = vector of nodal interaction 

forces, { = relative acceleration with respect to the rotating 
frame;{ , { = normal and tangential accelerations due 
to the rotation of the frame; { = Coriolis acceleration. 
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The structural dynamic equation of the finite element of 
the H shape vibrator is obtained as [7, 8]: 
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where [M], [C], [G], [K], [K1], [K2] are matrices of the finite 
element, {U} is the nodal displacement vector, {F} is the 
vector of nodal excitation forces caused by the piezoelectric 
effect, {X} is the vector of nodal coordinates of the finite 
element, {R} is the vector of nodal interaction forces, ω and 
ε correspondingly are the angular velocity and angular 
acceleration of the fork rotation about its longitudinal axis.  

 
Fig. 1 Vibrating structure of the sensor 

The FE model of a non-rotating structure has been 
developed in ANSYS by using SHELL43 elements and used 
for obtaining the modes of the tuning fork. In order to take 
into account the gyroscopic effects caused by rotation of the 
fork the model has been extended by adding the gyroscopic 
matrix [G], correction terms [K1], [K2] of the stiffness 
matrix, and angular frequency dependent forcing terms 

as presented in equation (4). In 
order to analyse vibrations of the tuning fork in terms of 
slowly varying amplitudes the time averaging method has 
been applied. Results are presented in terms of sensor 
performance characteristics for various design parameters 
and modes of operation. 

2
2} ]{ }Xε−

By the use of finite element analysis the operation 
specifics of the sensor and the quantitative evaluation of the 
relationship of the output signal against the angular velocity 
of the outer frame have been modelled. The modelling 
assumptions adopted were tested experimentally on the 
vibrating quartz resonator.  

The tuning fork as a continuous structure has 
theoretically infinite number of vibration modes. A finite 
number of modes of a non-rotating fork are obtained by 
solving the characteristic equation  

)[ ] ] { } 0U .                    (5) 

Natural frequencies of ten lower modes are presented in 
table 1.  

 
TABLE 1. Lower range of natural frequencies of the fork 

Mode number Natural frequency (Hz) 
1 3.529 
2 4.048 
3 8.110 
4 8.113 
5 11.215 
6 12.052 
7 25.085 
8 25.398 
9 25.400 

10 27.183 

 



 

The fundamental vibration modes of interest are 3rd, 4th, 
9th and 10th ones; they play the key role in the resonant 
dynamic behaviour of the rate sensor and provide the in-

plane and out-of-plane vibration coupling of the fork 
rotating about the Oz axis. The shapes of these modes are 
presented in Fig.2 and Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2.  3th and 4th (out-of-plane) modes of the tuning fork 

 

 
Fig. 3. 8th and 9th (in-plane) modes of the tuning fork 

 



 

 3.  PARAMETER SENSITIVITY 
 

As the tuning fork is a mechanical vibrating system with 
high value of mechanical Q-factor, its performance and 
dynamic features depend substantially upon natural 
frequencies and shapes of vibration. The influence of the 
design parameters can be most effectively carried out by 
employing gradient techniques.  

Sensitivity is defined in terms of a sensitivity function, 
which denotes the sensitivity of the system design decisions 
to variations in the system geometric parameters presented 
in Fig. 4. The finite element matrices of the tuning fork can 
be presented as functions [  of the geometric 
parameters  of the vibrating structure [9]. The relations 
between small variations of design parameters and 
corresponding variations of natural frequencies of vibration 
are obtained by using the free vibration equation (5). The 
first variation of (5) gives the following relations: 
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Fig. 5. Natural frequencies of 3rd and 4th modes vs. length l  

 4.  REDUCTION OF DYNAMIC EQUATIONS 
 { } [ ] { } ,i iC bζ∂ = ∂                         (6) 
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 is the matrix of 

sensitivity coefficients,  = square of the i-th angular 
natural frequency, { = the vector describing the i-th shape 
of vibration.  

In case of moderate velocities of rotation of the frame 
the modal coupling and resonance phenomena of the fork in 
the rotating frame can be much better understood by 
expressing the equations in modal coordinates of the non-
damped and non-rotating structure, the vibration modes of 
which have a clear interpretation.  

Moreover, the aim of having the modal properties of a 
non-rotating structure as target functions in geometrical 
design of the fork is seen as more natural and convenient. 

 where the modal damping coefficients  are 
obtained as , and the substitution 

and relations [ ] , 

 have been employed. Though in 
modal coordinates, the equations are still coupled as the 
matrix  is non-diagonal.  
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Fig. 4. Geometric parameters of the vibrating structure 

Let us denote by the natural frequencies of 
the fork and by the matrix [Y] containing in its columns the 
natural forms of vibration of a non-rotating fork. By 
neglecting the effects caused by angular acceleration and 
centripetal forces, the steady vibration of the fork in the non-
rotating reference frame is governed by the equation in 
terms of modal displacements { as 
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The sensitivity functions obtained may further be used to 
bring about modifications needed in the structure’s dynamic 
properties and determine which modifications would be the 
most effective for the desired change.  

The analysis of obtained sensitivity coefficients indicates 
that the stiffness of the supporting bar described by its 
length and width has the main influence upon the difference 
of the 3rd and 4th natural frequencies. The plot of the values 
of the two frequencies against the value of parameter l (half 
length of the supporting bar) is presented in Fig. 5. At 
parameter value  natural frequencies of 31.54l m≈

l

rd and 
4th modes are equal, and this requires a special attention in 
dynamic analysis as here the magnitudes of the two natural 
frequencies may counterchange as a result of small variation 
of the parameter . 

Further simplification of the equations can be carried out 
by neglecting the dynamic contributions of higher modes of 
the fork [10]. We partition the modes and modal 
displacements into two sets so that the displacement vector 
can be presented as { } , and truncate 
the terms corresponding to  inertial and damping forces of 
the second modal set. Finally the following equation in 
terms of modal displacements of only first set is obtained as  

[ ]{ } [ ]{ }1 1 2 2U Y z Y z= +
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In order to perform its function as the sensitive element 

of the rate meter, the tuning fork is excited by means of the 
applied electric voltage over one half of the fork (input 
tines). The frequency of excitation of the fork is close to the 
natural frequencies of resonant out-of-plane modes 3 and 4 
(Fig. 2), though the modes are not excited because of the in-
plane action of electromechanical excitation forces. For in-
plane vibration, the excitation frequency is far below the 
resonance, so they may be regarded as non-resonant.  

In order to perform its function as the sensitive element 
of the rate meter, the tuning fork is excited by means of the 
applied electric voltage over one half of the fork (input 
tines). The frequency of excitation of the fork is close to the 
natural frequencies of resonant out-of-plane modes 3 and 4 
(Fig. 2), though the modes are not excited because of the in-
plane action of electromechanical excitation forces. For in-
plane vibration, the excitation frequency is far below the 
resonance, so they may be regarded as non-resonant.  

where  is the higher 
modes compliance matrix. 
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The model consisting of piezoelectric shell elements has 
been programmed in ANSYS and FOTRAN. The reason of 
application several different programming environments 
was that the ANSYS program does not allow obtaining the 
harmonic vibration response of the rotating structure. 
Therefore the structural stiffness and mass matrices have 
been printed to files and taken into a FORTRAN program 
that was written to perform calculations by using the above-
presented dynamically reduced model.  

While the frame is rotating, in-plane vibration of input 
tines excites both neighbouring modes 3 and 4. The 
vibration law of output tines depends upon the mutual 
position of values of natural frequencies f3 and f4 on the 
frequency axis.  

While the frame is rotating, in-plane vibration of input 
tines excites both neighbouring modes 3 and 4. The 
vibration law of output tines depends upon the mutual 
position of values of natural frequencies f3 and f4 on the 
frequency axis.  

If f3=f4 , the out-of-plane vibration of output tines will 
not be excited because of eliminating each other 
contributions of modes 3 and 4. However, the resonant out-
of-plane vibration will be excited in input tines. This mode 
of operation is based on a very narrow allowable frequency 
range in order to keep the output vibrations essentially on 
the peak of AFCH curve. Similar dynamic properties can be 
obtained in case when the fork is excited over all the surface 
of the fork. In a rotating frame, the in-plane vibration would 
excite only mode 3 of out-of-plane vibration;  

If f3=f4 , the out-of-plane vibration of output tines will 
not be excited because of eliminating each other 
contributions of modes 3 and 4. However, the resonant out-
of-plane vibration will be excited in input tines. This mode 
of operation is based on a very narrow allowable frequency 
range in order to keep the output vibrations essentially on 
the peak of AFCH curve. Similar dynamic properties can be 
obtained in case when the fork is excited over all the surface 
of the fork. In a rotating frame, the in-plane vibration would 
excite only mode 3 of out-of-plane vibration;  

The accuracy of the solution depends upon the number 
of modes taken into consideration. We always may obtain 
the exact solution when solving equations with all modes 
participating with their dynamic contributions. If the 
solution is close to the exact one with taking into account 
the dynamic contributions of only few modes, the 
participating modes are decisive for the operation law of the 
angular rate meter. 

Fig.6 presents the amplitude frequency characteristics 
(AFCH) of the characteristic points (A) and (B) on the input 
(driving) and output (pickup) tines of the tuning fork by 
taking first 4 modes, first 9 modes and the full dynamic 
model. The detailed analysis of the influence of modes by 
adding them one by one to the dynamic model leads to the 
conclusion that the 9x9 reduced dynamic model obtained by 
taking into account the dynamic contributions of only first 9 
modes is accurate enough and can be used instead of the full 
1326x1326 original model. It should be noticed that 8th and 
9th dynamic modal contributions though excited far below 
the resonance are important for proper representation of the 
dynamic features of the system.  

 dynamic 
model. The detailed analysis of the influence of modes by 
adding them one by one to the dynamic model leads to the 
conclusion that the 9x9 reduced dynamic model obtained by 
taking into account the dynamic contributions of only first 9 
modes is accurate enough and can be used instead of the full 
1326x1326 original model. It should be noticed that 8th and 
9th dynamic modal contributions though excited far below 
the resonance are important for proper representation of the 
dynamic features of the system.  

The optimum separation of natural frequencies f3 and f4   
by selecting proper geometrical parameters allows obtaining 
out-of-plane vibration of output tines, the AFCH of which 
has a plateau or a local minimum on its top. The tolerance of 
the excitation frequency is allowable in wider range, Fig. 7a, 
where 

The optimum separation of natural frequencies f3 and f4   
by selecting proper geometrical parameters allows obtaining 
out-of-plane vibration of output tines, the AFCH of which 
has a plateau or a local minimum on its top. The tolerance of 
the excitation frequency is allowable in wider range, Fig. 7a, 
where ,A BUU  and  denote the amplitudes and phase 
angles of input and output tines’ vibration.  

,A Bφ φ

If f3 is very close but not equal to f4 , the out-of-plane 
vibration of output tines will be excited by rotation of the 
frame. The phase angle of vibration of output tines will 
depend upon the mutual positions of natural frequencies of 
symmetrical (f3) and anti-symmetrical (f4) out-of-plane 
modes. As the frequency values of them interchange (i.e., f3   

The comparison of the results obtained by using the 
reduced and full models demonstrates their good 
coincidence. The reduced model runs 50-100 times faster 
and saves computing time considerably when obtaining the 
amplitude- and phase-frequency characteristics that require 
multiple calculations of the forced harmonic response.  

The comparison of the results obtained by using the 
reduced and full models demonstrates their good 
coincidence. The reduced model runs 50-100 times faster 
and saves computing time considerably when obtaining the 
amplitude- and phase-frequency characteristics that require 
multiple calculations of the forced harmonic response.  

becomes greater as f4), the phase angle of output tines 
vibration changes through value , Fig. 7b.  π

This leads to the same effect as the change of the sign of 
angular of rotation of the frame and can cause a 
misinterpretation of the direction of rotation.  5.  ANALYSIS OF THE DYNAMIC BEHAVIOUR 5.  ANALYSIS OF THE DYNAMIC BEHAVIOUR 

Fig. 6. Frequency response of the vibrating structure. 
         U  = the dimensionless vibration amplitude  

By selecting a rational difference between natural 
frequencies of the out-of-plane vibration of the fork the 
peaks of AFCH may be made wider and less sharp in order 
to decrease the possibility of misinterpretation of the 
measured angular velocity direction on the base of the phase 
angle of vibration of the output tines. 

 
6. CONCLUSION 

 
The dynamic behaviour of the balanced H-shape 

oscillator of the piezoelectric rate sensor has been analysed 
by means of a finite element model including the gyroscopic 
effects upon vibrating structure in a rotating frame.  

Structural vibration problems present a major hazard and 
design limitation for interpretation of the system properties 
and their impact on system performance.  

 



 

 

 
a)  f3.=8115,3 Hz;  f4.=8116 Hz. 

 
b)  frequencies f3.and  f4. for each curve correspond to the 

values of length l indicated in Fig. 5 

Fig. 7. Effects of frequencies f3 and f4 separation on the 
system frequency response 

     A novel computation model and software tools have been 
developed that allow both accurate simulation of the 
dynamic behaviour of the sensor and appreciation of the 
parametric sensitivity.  

It has been demonstrated that investigation of the 
dynamic behaviour of an angular rate sensor by employing 
the 3D FE model facilitates considerably the understanding 
of the operation specifics of the sensor and allows the 
quantitative evaluation of the input-output relationship.  

The modelling approach worked out can be also applied 
to the education of advanced level specialists in the field of 
measurement and instrumentation in the design-oriented 
framework.  
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